14,668 research outputs found

    Geosciences for Elementary Educators: A Course Assessment

    Get PDF
    Geosciences for Elementary Educators engages future elementary teachers in a hands-on investigation of topics aligned with the third and fifth grade Earth/Space Science and Scientific Inquiry benchmarks of the Oregon Content Standards. The course was designed to develop the content background of elementary teachers within the framework of the science described in the content standards, to provide an opportunity for future teachers to explore the content area in relation to what takes place in the classrooms of elementary schools, and to initiate a community of learners focused on teaching science to elementary students. The course focused on four themes: the classroom teacher as an activity and curriculum developer using diverse resources to keep the content current and alive; the classroom teacher as educator dealing with the diverse backgrounds of students in a developmentally appropriate manner; the classroom teacher as reflective practitioner exploring the links among pedagogy, content, and student learning; and, the classroom teacher as citizen staying current with emerging policy issues and debates that impact education. In a course where process is extremely important, participants are assessed on what they can do with content and process knowledge through preparing lesson plans, presenting lessons in a simulated classroom environment, and developing a portfolio and journal. Lesson plans demonstrate participant understanding of inquiry, using models, deductive and inductive approaches, links between communication skills and content knowledge, and effective use of technology, including the Internet. For each topic, the mixture of demonstration, experimentation, inquiry, and lecture models are explored through investigation, discovery, and analysis

    Automation and Accountability in Decision Support System Interface Design

    Get PDF
    When the human element is introduced into decision support system design, entirely new layers of social and ethical issues emerge but are not always recognized as such. This paper discusses those ethical and social impact issues specific to decision support systems and highlights areas that interface designers should consider during design with an emphasis on military applications. Because of the inherent complexity of socio-technical systems, decision support systems are particularly vulnerable to certain potential ethical pitfalls that encompass automation and accountability issues. If computer systems diminish a user’s sense of moral agency and responsibility, an erosion of accountability could result. In addition, these problems are exacerbated when an interface is perceived as a legitimate authority. I argue that when developing human computer interfaces for decision support systems that have the ability to harm people, the possibility exists that a moral buffer, a form of psychological distancing, is created which allows people to ethically distance themselves from their actions

    Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    Get PDF
    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method, that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature.\ud \ud The models derived predict many of the qualitative features observed in the real industrial process, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information into the dependencies of the solution on the parameters and the dominant heat-transport mechanism

    Paying Attention to the Man behind the Curtain

    Get PDF
    In the push to develop smart energy systems, designers have increasingly focused on systems that measure and predict user behavior to effect optimal energy consumption. While such focus is an important component in these systems' success, designers have paid substantially less attention to the people on the other side of the energy system loop-the supervisors of power generation processes. Smart energy systems that leverage pervasive computing could add to these supervisory control operators' workload. They'll have to predict possible power plant load and production changes caused by environmental and plant events, as well as dynamic system adaptation in response to consumer behaviors. Contrary to many assumptions, inserting more automation, including distributed sensors and algorithms to postprocess data, won't necessarily reduce operators' workload or improve system performance

    Partitioning Complexity in Air Traffic Management Task

    Get PDF
    Cognitive complexity is a term that appears frequently in air traffic control (ATC) research literature, yet there is little principled investigation of the potential sources of cognitive complexity. Three distinctly different sources of cognitive complexity are proposed which are environmental, organizational, and display. Two experiments were conducted to explore whether or not these proposed components of complexity could be effectively partitioned, measured, and compared. The findings demonstrate that sources of complexity can be decomposed and measured and furthermore, the use of color in displays, a display design intervention meant to reduce environmental complexity, can actually contribute to it.This research was sponsored by the Civil Aerospace Medical Institute

    Using Discrete Event Simulation to Model Multi-Robot Multi-Operator Teamwork

    Get PDF
    With the increasing need for teams of operators in controlling multiple robots, it is important to understand how to construct the team and support team processes. While running experiments can be time consuming and expensive, the use of simulation models is an alternative method. In this study, we built a discrete event simulation model that represents multi-robot multi-operator teamwork. Preliminary results show that the model can generate performance measures consistent with experimental results.This research is sponsored by the Office for Naval Research and the Air Force Office of Scientific Research

    Operator Scheduling Strategies in Supervisory Control of Multiple UAVs

    Get PDF
    The application of network centric operations to time-constrained command and control environments will mean that human operators will be increasingly responsible for multiple simultaneous supervisory control tasks. One such futuristic application will be the control of multiple unmanned aerial vehicles (UAVs) by a single operator. To achieve such performance in complex, time critical, and high risk settings, automated systems will be required both to guarantee rapid system response as well as manageable workload for operators. Through the development of a simulation test bed for human supervisory control of multiple independent UAVs by a single operator, this paper presents recent efforts to investigate workload mitigation strategies as a function of increasing automation. A humanin- the-loop experiment revealed that under low workload conditions, operators’ cognitive strategies were relatively robust across increasing levels of automated decision support. However, when provided with explicit automated recommendations and with the ability to negotiate with external agencies for delays in arrival times for targets, operators inappropriately fixated on the need to globally optimize their schedules. In addition, without explicit visual representation of uncertainty, operators tended to treated all probabilities uniformly. This study also revealed that operators that reached cognitive saturation adapted two very distinct management strategies, which led to varying degrees of success. Lastly, operators with management-by-exception decision support exhibited evidence of automation bias.This research was sponsored by Boeing Phantom Works

    Assessing the Impact of Auditory Peripheral Displays for UAV Operators

    Get PDF
    A future implementation of unmanned aerial vehicle (UAV) operations is having a single operator control multiple UAVs. The research presented here explores possible avenues of enhancing audio cues of UAV interfaces for this futuristic control of multiple UAVs by a single operator. This project specifically evaluates the value of continuous and discrete audio cues as indicators of course deviations or late arrivals to targets for UAV missions. It also looks at the value of the audio cues in single and multiple UAV scenarios. To this end, an experiment was carried out on the Multiple Autonomous Unmanned Vehicle Experimental (MAUVE) test bed developed in the Humans and Automation Laboratory at the Massachusetts Institute of Technology with 44 military participants. Specifically, two continuous audio alerts were mapped to two human supervisory tasks within MAUVE. One of the continuous audio alerts, an oscillating course deviation alert was mapped to UAV course deviations which occurred over a continual scale. The other continuous audio alert tested was a modulated late arrival alert which alerted the operator when a UAV was going to be late to a target. In this case the continuous audio was mapped to a discrete event in that the UAV was either on time or late to a target. The audio was continuous in that it was continually on and alerting the participant to the current state of the UAV. It either was playing a tone indicating the UAV was on time to a target or playing a tone indicating the UAV was late to a target. These continuous alerts were tested against more traditional single beep alerts which acted as discrete alerts. The beeps were discrete in that when they were used for monitoring course deviations a single beep was played when the UAV got to specific threshold off of the course or for late arrivals a single beep was played when the UAV became late. The results show that the use of the continuous audio alerts enhances a single operator’s performance in monitoring single and multiple semi-autonomous vehicles. However, the results also emphasize the necessity to properly integrate the continuous audio with the other auditory alarms and visual representations in a display, as it is possible for discrete audio alerts to be lost in aural saliency of continuous audio, leaving operators reliant on the visual aspects of the display.Prepared for Charles River Analytics, Inc
    • …
    corecore